
TRADITIONAL DATA-DRIVEN 
SCIENTIFIC DISCOVERY METHODS 

DO NOT SCALE TO LARGE DATASETS 

•  7km GEOS-5 “Nature Run” 
•  1 dataset, 3.5 PB 
•  theoretically: openly accessible 
•  practically: precomputed pics 
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COMMON WORKFLOW FOR 
SCIENTIFIC DATA ANALYSIS 

1.  Data Management: Acquisition, Conversion, and Regridding 

2.  Computation and Analysis  

3.  Visualization / Comparison 
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SPECIFIC TECHNICAL CHALLENGES THAT 
PREVENT INTERACTIVE SCALING OF DATA-

DRIVEN DISCOVERY TO LARGE MODELS 

•  File formats unsuitable for streaming 
•  Batch mode data analyses 

•  system: submit job and wait 
• algorithm: only final results 

•  Programming models not progressive 
•  Server-side analysis does not scale to large communities 
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WE ADDRESS THE CHALLENGE OF 
INTERACTIVE EXPLORATION AND 

ANALYSIS OF MULTI-PETABYTE DATASETS 
WITHOUT MASSIVE HPC RESOURCES 
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INTERACTIVE  
MULTIRESOLUTION EXPLORATION  

OF MASSIVE REMOTE DATASETS 
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(Please show multires_nature video now) 



METHOD OVERVIEW 

• Generic EDSL scripting 
•  Progressive Runtime environment 
• On-demand data reordering 
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EMBEDDED DOMAIN SPECIFIC LANGUAGE AND 
RUNTIME FOR PROGRESSIVE COMPUTATION 

• Incremental computation results 
• EDSL supports…  

• abstract data type (location, resolution, format) 
• unordered loops 
•  incremental publishing 

•  renders current measure of data access irrelevant 
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PROGRESSIVE RUNTIME FOR  
INCREMENTAL SCRIPT EXECUTION 

•  incremental results 
•  resolution level 
•  loop order and parallelization 
•  server-side processing 
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WHY AN EDSL?  
THE IMPORTANCE OF GENERICITY  

IN ANALYSIS SCRIPTS 
• Genericity facilitates runtime utilization of… 

•  incremental execution 
• data format advantages 
•  superior loop ordering 
•  remote processing 
• parallelization 
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EMBEDDED DSL FOR INCREMENTAL 
COMPUTING 

• Minimal extensions to host language 
• doPublish, scientific data type, generic loops 

•  Example operations of our data type: 
• elementwise combinations (add, subtract, multiply, 

divide, …) 
•  statistical calculation (average, standard deviation, 

range, median, …) 
• domain selection (crop, paste, resize, interleave, …) 
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EDSL SCRIPT FOR INCREMENTAL 
COMPUTATION OF AVERAGE 

var output = Array.new(); 
var i = 0; 
unordered(time, [start, end])            // generic loop 
{ 
  var field = Array.read(‘fieldname’, time);  
  // critical section (output and i must be updated atomically) 
  {{ 
    output += (field - output) / (i + 1);   // update incremental average 
    i++; 
  }} 
  doPublish();             // make intermediate result available 
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EFFECT OF LOOP ORDERING AND 
STREAMING DATA FORMAT FOR PETA-
SCALE CLIMATE DATA ANALYSIS AND 

VISUALIZATION 
•   3.5 petabyte 7km GEOS-5 “Nature Run” climate simulation dataset  

12 



13 

PROGRAMMING MODEL AND RUNTIME SYSTEM 
ALLOW ALTERNATIVE DATA ORGANIZATION AND 

PROGRESSIVE COMPUTATIONS 



PROGRAMMING MODEL AND RUNTIME SYSTEM 
ALLOW ALTERNATIVE DATA ORGANIZATION AND 

PROGRESSIVE COMPUTATIONS 
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COMPARISON OF DIFFERENT LOOP 
ORDERINGS 
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(Please show order comparison video now) 



ON-DEMAND DATA REORDERING FOR  
INTERACTIVE VISUALIZATION AND ANALYSIS 

OF MASSIVE, DISPARATELY LOCATED DATA 

• Interactive access to massive data 
• multiresolution data layouts (IDX) 
• on-demand conversion (operational at LLNL) 
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INCREMENTAL MULTIRESOLUTION 
DATA LOADING 

(a) Coarse resolution

(b) Full resolution
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(a) Coarse resolution

(b) Full resolution



ON-DEMAND DATA REORDERING FOR OPTIMAL 
ACCESS OF MASSIVE SPATIOTEMPORAL DATA 
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EFFECT OF RESOLUTION ON SPEED AND 
ACCURACY FOR A LARGE COMPUTATION 
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DISPARATELY LOCATED DATA CAN BE 
PROCESSED IN MULTIPLE LOCATIONS  

AT MOST SUITABLE RESOLUTION 

• Eases multi-ensemble analyses 
• automatic regridding (user has control) 
• server-side distributed computation 
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RUNTIME: SERVER-SIDE PROCESSING 

•  Server-side processing: 
•  Identical scripting engine as client 
•  Remote computation can dramatically reduce data transfer 
•  Local vs remote computation specified per script 
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USING INTERACTIVE ANALYSIS FOR 
DATASET ERROR DISCOVERY 

correct zonal average 

error: every 30 days  
  duplicate first day! 
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CONCLUSION 

• EDSL + Runtime for interactive, peta-scale data exploration 
•  Incremental results of dataflow execution 
• On-demand reordering for optimal data access 
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WHERE WE’RE GOING FROM HERE 

• Compression of multiresolution data (w/ Peter Lindstrom, LLNL) 
• exploring bit-level precision (e.g., specify 2-bits per item)     

• Use abstract computation graph for distribution of computation 
• Automatically determine resolution level, loop order, remote, ...     
• Web interface    
• Docker deployment 
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FLEXIBLE COMPRESSION CAPABILITIES:  
COMBINING DATA REDUCTION IN 

BOTH RESOLUTION AND PRECISION 
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•  Achieving better compression than each dimension alone 
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INTEGRATION WITH ESGF AND  
EXISTING ANALYSIS TOOLS 

• 2013: Using Python SWIG wrappers, UV-CDAT/ViSUS integration  
• 2014: Automatic regridding; scripting system is created 
• 2015: On-demand conversion of ESGF-hosted data to IDX 
• 2016: EDSL formalized; server-side scripting added 
• 2017: Integrate CDMS2 module level to enable first class 

treatment of IDX datasets  
• 2017: Multinode incremental server-side EDSL execution 
• 2017: Web interface for EDSL-based data analysis and vis 
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EMBEDDED DSL AND RUNTIME FOR 
PROGRESSIVE SPATIOTEMPORAL DATA 

ANALYSIS AND VIS 
•  Focus on data analysis, not data management 
•  Incremental results, interruptible execution, interactive exploration  
•  Transparent handling of massive, disparately-located data 

10% complete 

our method 

final result 

naive method 
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